Effective Hamiltonian models and unimolecular decomposition.

نویسندگان

  • Curt Wittig
  • Ilya Bezel
چکیده

Partitioning Hilbert space into two subspaces by using orthogonal projection operators yields compact forms for effective Hamiltonians for each of the subspaces. When one (the Q space) contains molecular bound states and the other (the P space) contains dissociative continua, a simple form for the non-Hermitian Q-space effective Hamiltonian, H(eff), can be obtained, subject to reasonable approximations. Namely, H(eff) = H0 - ivariant Planck's/2pi Gamma/2, where H0 is Hermitian, and the width operator variant Planck's/2pi Gamma accounts for couplings of the Q-space levels to the P-space continua. The P/Q partitioning procedure has been applied in many areas of atomic, molecular, and nuclear physics with widespread success. Inputting into this formalism ideas from random matrix theory in order to model independent open channels yields the random matrix H(eff) model. Despite numerous efforts, this model has failed to model satisfactorily the statistical transition-state theory of unimolecular decomposition (hereafter referred to as TST) in the regime of overlapping resonances, where nearly all such reactions occur. All statistical models of unimolecular decomposition are premised on rapid intramolecular vibrational redistribution (IVR) for a given set of good quantum numbers. The phase space thus accessed results in a threshold reaction rate of 1/h rho, and for K independent open channels, the rate is K/h rho. This reaction rate corresponds to a resonance width of K/2pi rho, and when K increases, the resonances (which are rho(-1) apart) overlap. In this regime, the random matrix H(eff) model fails because it does not introduce independent open channels. To illustrate the source of the problem, an analysis is carried out of a simple model that is obviously and manifestly inconsistent with TST. This model is solved exactly, and it is then put in the form of the random matrix H(eff) model, illustrating the one-to-one correspondence. This reveals the deficiencies of the latter. In manipulating this model into the form H0 - ivariant Planck's/2pi Gamma/2, it becomes clear that the independent open channels in the random matrix H(eff) model are inconsistent with TST. Rather, this model is one of gateway states (i.e., bound states that are coupled to their respective continua as well as to a manifold of zero-order bound states, none of which are coupled directly to the continua). Despite the fact that the effective Hamiltonian method is, by itself, beyond reproach, the random matrix H(eff) model is flawed as a model of unimolecular decomposition in several respects, most notably, bifurcations of the distributions of resonance widths in the regime of overlapping resonances.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Final state-selected spectra in unimolecular reactions: A transition-state- based random matrix model for overlapping resonances

Final state-selected spectra in unimolecular decomposition are obtained by a random matrix version of Feshbach’s optical model. The number of final states which are independently coupled to the molecular quasibound states is identified with the number of states at the dividing surface of transition state theory ~TST!. The coupling of the transition state to the molecular complex is modeled via ...

متن کامل

Effective Hamiltonian of Electroweak Penguin for Hadronic b Quark Decays

In this research we work with the effective Hamiltonian and the quark model. We investigate the decay rates of matter-antimatter of quark. We describe the effective Hamiltonian theory and apply this theory to the calculation of current-current ( ), QCD penguin ( ), magnetic dipole ( ) and electroweak penguin ( ) decay rates. The gluonic penguin structure of hadronic decays is studied thro...

متن کامل

Mixing between Vibrationally Highly Excited Resonance States of DCO

Over the last years, state-resolved studies of unimolecular reactions of small and intermediate size molecules have provided considerable new insight into the dissociative dynamics of vibrationally highly excited molecules. In our laboratory, we use the technique of stimulated emission pumping (SEP) for preparing and probing selected highly excited states. In a case study of DCO ( X~ A’), we de...

متن کامل

Unimolecular decomposition of 5-aminotetrazole and its tautomer 5-iminotetrazole: new insight from isopotential searching.

Aminotetrazole compounds have become attractive ingredients in gas generating compositions, solid rocket propellants, and green pyrotechnics. Therefore, a fundamental understanding of their thermal decomposition mechanisms and thermodynamics is of great interest. In this study, the specular reflection isopotential searching method was used to investigate the unimolecular decomposition mechanism...

متن کامل

Nitromethane - Methyl Nitrite Rearrangement: The Seising of Discrepancy between Theory and Experiment

The potential energy hyper surfaces (FES) of the unimolecular rearrangements of a) Nitromethane itei totrans acknitromethane b) nitrometharie (/) to methyl nitrite (3) and c) naromethane decomposition tomethyl and nitrogen dioxide were searched using the ab !nth° MP2 method. Split valence 6-310(d.p) basisset was used for geometry optimizations, frequency and 1RC computations along each reaction...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 110 40  شماره 

صفحات  -

تاریخ انتشار 2006